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ABSTRACT

If f(l)(a) (a = a,b, i=20,1,...,k - 1) are given, then we get a class
. . . . . (1) _ 1)
of the Hermite approximation operator Qf = F satisfying F (a) = £ (a),

is the many-knot spline function whose knots are at points

where F
The operator

a= yo < y1 € o200 £ yk‘1 =b, and F e Pk on [Yi_1lyi]o

yi :
kU ) (i)

is of the form Qf := [ [f (a)¢, + £ 7(b)¥,]. We give an explicit
i=0

representation of ¢i and ¢i in terms of B-splines Ni,k‘ We show that

Q reproduces appropriate classes of polynomials.
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SIGNIFICANCE AND EXPLANATION
This paper deals with Hermite interpolation on the interval [a,b)] using
many-knot splines. The contribution of this paper is to find a many-knot
spline function F of degree k - 1 whose knots are at points Yyid

a =y, < ¥4 < oo £ yk_1 =b .

When conditions are given on the ends of [a,b] f(l)(a). a = a,b,
kU (i)
i=0,s00,k -1, then F = Qf = z (f (a)¢i + £ (b)wi] and F € Pk on
i=0

[yi_1,yi] i=1,2,...,k ~ 1. The explicit representations of basic

functions ¢j, ¢j which have properties

(i)
=0, (b)Y = 6
(a) WJ (b) ij

(i)

(i) (i)(b) =0, wj

(a) =6_., 4.

¢J 1] b

for all i,j = 0,1,.00,k = 1

are given in terms of B-splines Ni,k' We also prove that this approximation
operator Q reproduces appropriate classes of polynomials.

Since the degree of the many-knot splines used here is lower than that of
ordinary Hermite interpolation and the knots of the splines can be chosen, it
would be useful for some problems, for example, in Computer Aided Geometric

Design (CAGD). i~

o

-

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authorsof this report.
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1. \ INTRODUCTIC 4 o
——— :

By .
~“Some authors considered operators of the form Qf = Z Xi'fN1 X’ where {N1 k)
] ’ ’

—

is a

sequence of B-splines and {Xif is a sequence of linear functionals. The variation
diminishing method of Schoenberg ((9], (5], (6]), the quasi-interpolant of de Boor and Fix
are well-known. Such approximation schemes have several important advantages over spline
interpolation. They can be constructed directly without matrix inversion, local error
bounds can be obtained naturally. Qi considered so-called many-knot splines which have
many m&te knots than degrees of freedom and constructed the cardinal spline

Qf = f f(*;)q;’;, where é;‘; is F?de up of B-splines on a uniform partition, has small
support and satisfies q;;;(;i) = 6ij'[7] Such an approximation operator reproduces
appropriate classes of polynomialsla]qi\\ Lt

The purpose of this paper is to éﬁnstrﬁctla class of many-knot explicit local

polynomial spline approximation operators for Hermite interpolation of real-valued

functions defined on gome interval {a,b].

Let P be the set of polynomials of degree less than k, and let

k
a=y, <y, < oee ¢ Yyaq = b. (1.0)
We define
s := {g: g| ep, i=0,1.00,k = 2} .
x lyge¥gyy) %

a

sk is the familiar class of polynomial splines of order k with knots at the points

¥, (L =0,1,600,k = 2).
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Let F be a linear space of real valued functions on [a,b)l, and suppose F

contains the class of polynomials Pk. Given f e F, we construct an approximation

F(*) = Qf(*) such that

( (2)

e ) e ey, ™Mby = ™ (p) Le0,1,.00k - 1. (1.1)
In other words, set

k=1

k=1
ot = | :‘“moj(x) + ] f(j)(bwj(x) . (1.2)
3=0 3=0
suppose .j' Wj satisfying
(1) (1)
-6 P = 3
Oj (a) ) oj (b) = 0 (1.3)
(1) (1)
= ’ -6 .
Wj (a) 0 Vj (b) i (1.4)

1, =0,,ee00k =2

If ¢, and ¥, are chosen in P, then this problem above has been considered

b J 2k=2"

(see, for instance, [1], (3], {4])), and in this case F € P2k-2 on (a,b]l.

satisfying (1.1). Such many-knot cardinal

-

We will find a many-knot spline F e sk

splines {03) and (Vj} are of degree less than k, therefore F is also of degree less

than k. We present ¢, and V¥, as explicit representations.

b 3
This paper proves that the many-knot spline Hermite approximation operator 0

reproduces appropriate classes of polynomials on [a,b].




2. CONSTRUCTION OF ¢j AND Wj
Without loss of generality, we assume a = 0 and b = 1., First of all set k =3 as

an example.

Let @0, ¢1, Wo. W1 be piecewise polynomials of degree 2 with knots x = % ’
satisfying the following conditions
= . =
%(0) 1, O.,(O) 1,
= = . = = = M =
95(0) = ¢,(1) = ¢5(1) =0, 0,(0) ¢, (1) = 9J(1) =0,
1 \ 1 1
o5+ 0 =8(3-0), ¢,(z+0) =0 (z-0),
1 1 1 1
8(3+0) = e5(5-0), $1G+0) = e3(5-0).
and wo(x) i= ¢0(1 - x), ¢1(x) i= -01(1 - x).
Easily one gets
2l e, xe[o,%],
Pyix) = ) .
2x-1°, xel5 1)
3 .2 1
-‘z-x + x , xe[o,-i],
01(x) =
1 2 1
3 (x=- 1%, xe[3 1] .
Their graphs are sketched as follows
t % % o
o % 1
. o 3 1 o 3 1 L




In order to consider the general case, denote

In := {0,1,.0.,n}

$.(x) := } @, x, x € [x ,x
) el
k-1

i+1

(the partition is 0 = X <% < x, < oss € X " 1), and

%)

*

(x

N E))
1T = x v 0), e L\ok, terx .,

(1)

4

(W =0, 4{,jer

(1) gy o
000 = 8, -2

j ’

Since we have k(k - 1) unknown coefficients with k(k - 1) conditions, so it

a
Jou

seems possible to find Gj e But, it is difficult to get the explicit representations for
’

aj " Below we will directly present the explicit formulas for oj and Wj.
’

Here are the notations used in our discussion.

Let X := (xi) be a nondecreasing sequence. The i-th B-spline of order k for the
knot sequence (x;) is denoted by

I('-x):-1

N,  (x) := (xi* 14K

1,k - xi)[xi,...,x

k
for all x € R, where the symbol [xi""'xi+k] denotes the k-th oder divided-difference

functional

sym (3,0, ,...,8 ) = ) a, a .0
1 -1 v, %y v
¥ 2 n RS e e u

VieL . v Fv ity

() k-1
L L VT RTINS V4
‘0) = o m
E meympiee) 1= 1.

From (1.0), we define

(2.2)

-4-
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Thus we get a partition on [-1,1] from [0,1]:

-1 = x, < %X, € s00 € X < x =0 < x <x € coe < Xx 1. (2.3)

0 1 k=2 * *k-1 Kk Xet 2(k=1) ~

We construct the following functions on (0,1] as a special kind of combination of

B-splines
¢, (x) = 1 1 ghath)y (x) , 1
3 I jer i i,k
k-2 (2.4) q
i
for xe {0,1) , j e Ik_2 . ‘
i
Theoxem 1. The functions Oj(x) defined in (2.4) satisfy
!
(L) !
°j (0) = 6lj . (2.5) i
0(!)(,‘) =0 for x| »1 t,je1 (2.6)
3j ’ ’ k-2 °
(L) (%)
Proof, If i e Ik 2 and |x| » 1, then “i k(x) = 0, therefore 'j (x) = 0 for all
- ]
= (L)
> 1. = i
L,je Ik-z and {x| 1. If i e Ik-z' then Ni,k‘O) 0 since b
I, =l e {-..,-2.-1,0,!,2,...),Ni'k(0) * 0} .

By Marsden's Idcntity‘sl, for x € [0,1)

-1
e § £i")u1'k(x) . M E 1,2,0000k . (2.7)

Thus

0(1)(x) |

=G I e )
) 3 e i 1,k |

k-2 x=0

2x-3 ;

1 L

S PR IR LA W |
ter, ,  i=k-1 ’ x=0

for L,jel

el 3H® -
3 ) lx-o Sgq ¢ k-2

Let

¥, (x) 3= Oj(x - 1)

b}

5=




Notice (2.2), (2.3), easily to see

L (3+¢1)
Wj(X) 31 L €i N1+k_‘lk(x) .
k-2
By (2.5) we get
2)
v (0) = 0
b
(L) - .
Wj (1) Glj , for t,je Lo ®
Examples: k = 3,
00 1 1 NO,J(x)
¢ a - l a N (x)
1 2 1,3
Y, * Y b4
Q 1 1
@ = sym lygeyy)/2 == 2
when the partition is uniform, then
00 = “0,3(X) + N"a(x) ‘
¢, = - 1 N, (x) +—-N_ _(x) .
1 0,3 1,3
k=4,
00 1 1 1 NO,d(x)
- -2 -1
4 % -3 % -3 % Ny,4'%
1- YO) y2 a
‘ (o, - a, + 7720 (s, - e +3%)21 “2 N, 0/,
where
Yo ¥, t Y,
G‘ - 'Y‘1(Yooy‘oY2)/3 = "‘_‘—3_'_ ’
Yo¥q * Y(¥Yy * ¥,Y
071 172 270
“2 'Y‘ztyoay1l¥2)/3 3 .

-6

(2.8)

x e [0,1]
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Theorem 2. Qg = g for all ge P .

e o 5 . o A A A AL A WA AR e %~

In uniform case

3. THE OPERATOR Q REPRODUCES APPROPRIATE CLASSES OF POLYNOMIALS

$, = - % N + % N ’ x e [0,1]

Using the functions ¢j and Wj, we have the following approximation operator

QF(*) := | [f‘j’(owj + f(j)HWj](') ,

I€oy-2

-

Q dJdefines a linear operator mapping F into sk.

k

Proof. Let

i€rI b,

span (N) := span(Ni'k: 2k-3

span(9,¥) := span(¢j,wj: j e Ik-z) R

s :={g:Q9=g}.
Then both span(N) and span($,¥) are linear subspaces of F on
2k - 2.
By (2.4) and (2.8) we have

span{$,¥) C span (N) .

Since
dim({span(¢,¥)) = dim(span(N)) = 2k - 2 ,
span(¢$,¥) = span(N)
Obviously
P, < span(N)
i.e.
LA span{(¢,¥)

-7-

[0,1} of dimension
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Now it is sufficient to prove that
§ = span(¢,y) . (3.1)
It follows from the definition of the set S and the operator Q that
s C span{¢,¥) . (3.2)
On the other hand, Theorem 1 implies that we have Qf = f for any f € span(¢,V).
Hence
span{¢,¥) C s . (3.3)

(3.2) and (3.3) mean that (3.1) is valid.
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ABSTRACT (cont.)

k-1
is of the form Of := Z
i=0

representation of ¢i and wi in terms of B-splines Ni K* We show that
’

£ @e, + £M w1y 1. we give an explicit

Q reproduces appropriate classes of polynomials.







